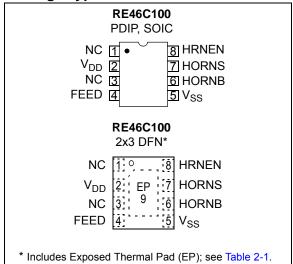
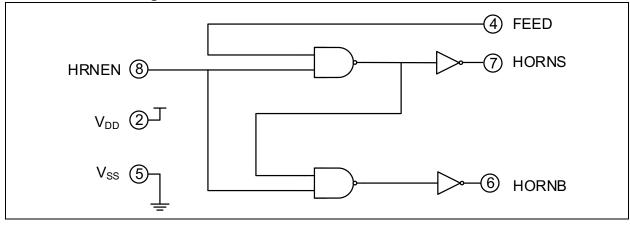


Piezoelectric Horn Driver Circuit

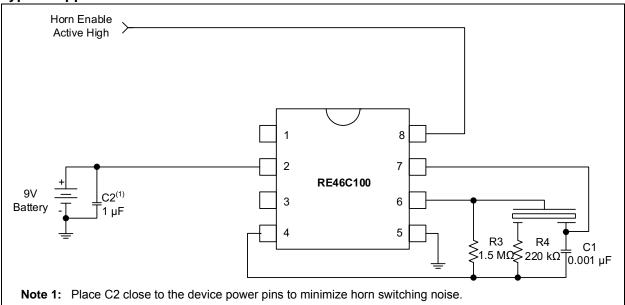
Features:


- Low Quiescent Current (< 100 nA)
- Low Driver R_{ON} 20Ω typical at 9V
- · Wide Operating Voltage Range
- · Available in 8-pin DFN, PDIP and SOIC packages

General Description:


The RE46C100 devices are intended for applications using a self oscillating piezoelectric horn, although it can be used in direct drive applications. Feedback control and a driver circuit are provided, as well as a horn enable function.

The RE46C100 is intended for use in smoke detectors, CO detectors, personal security products and electronic toys.


Package Types

Functional Block Diagram

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage	V _{DD} = 18V
Input Voltage Range Except FEED, TEST V	$I_{IN} = -0.3V \text{ to } V_{DD} + 0.3V$
FEED Input Voltage Range	V _{INFD} =-10 to +22V
Input Current except FEED	I _{IN} = 10 mA
Operating Temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$
Storage Temperature	$T_{STG} = -55 \text{ to } +125^{\circ}\text{C}$
Maximum Junction Temperature	T _J = +150°C

† Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics: Unless otherwise indicated, all parameters apply at $T_A = +25$ °C, $V_{DD} = 9V$, Typical Application.

.)	-) production									
Parameter	Symbol	Test Pin	Min.	Тур.	Max.	Units	Conditions			
Supply Voltage	V_{DD}	2	6	9	16	V	Operating			
Supply Current	I _{DD1}	2	_	_	100	nA	HRNEN = 0V, FEED = 0V			
Input Voltage Low	V _{IL1}	8	_	_	1	V				
Input Voltage High	V _{IH1}	8	2.3	_	_	V				
Input Leakage Low	I _{IL1}	8	_	_	-100	nA	V _{IN} = V _{SS}			
	I _{LFD}	4	_	_	-50	μA	FEED = -10V			
Input Leakage High	I _{IH1}	8	_	_	100	nA	$V_{IN} = V_{DD}$			
	I _{HFD}	4	_	_	50	μΑ	FEED = 22V			
Output Voltage Low	V _{OL1}	6, 7	_	0.3	0.5	V	I _{OL} = 16 mA			
	V _{OL2}	6, 7	_	_	0.9	V	I _{OL} = 16 mA, V _{DD} = 7.2V			
Output Voltage High	V _{OH1}	6, 7	8.5	8.7	_	V	I _{OH} = -16 mA			
	V _{OH2}	6, 7	6.3	_	_	V	I _{OH} = -16 mA, V _{DD} = 7.2V			

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, all parameters apply at $T_A = +25^{\circ}C$, $V_{DD} = 9V$, Typical Application.

· JP · · · · · · · · · · · · · · · · · ·						
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Operating Temperature Range	T _A	-40	_	+85	°C	
Storage Temperature Range	T _{STG}	-55	_	+125	°C	
Thermal Package Resistances						
Thermal Resistance, 8L 2x3 DFN	θ_{JA}	_	75	_	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	_	89.3	ı	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}		149.5	_	°C/W	

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

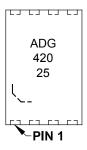
TABLE 2-1: PIN FUNCTION TABLE

RE46C100 PDIP, SOIC	RE46C100 DFN	Symbol	Description
1	1	NC	No connection
2	2	V_{DD}	Connect to the positive supply voltage
3	3	NC	No connection
4	4	FEED	Usually connected to the feedback electrode through a current-limiting resistor. If not used, this pin must be connected to V_{DD} or V_{SS} .
5	5	V _{SS}	Connect to the negative supply voltage
6	6	HORNB	This pin is connected to the metal electrode of a piezoelectric transducer.
7	7	HORNS	This pin is a complementary output to HORNB, connected to the ceramic electrode of the piezoelectric transducer.
8	8	HRNEN	This pin enables the horn with a logic high.
_	9	EP	Exposed thermal pad. This pad should be connected to V _{SS} .

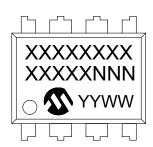
3.0 DEVICE DESCRIPTION

The RE46C100 horn driver provides the circuitry necessary to drive a three-terminal self-oscillating piezoelectric horn. It can also drive a two-terminal piezoelectric horn with the FEED pin used as a signal input. The horn driver provides a push-pull circuit to drive the horn, as shown in the Typical Application circuit.

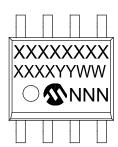
In a self-oscillating application, the FEED pin is connected to the feedback pin of the piezoelectric horn through a resistor. To drive a two-terminal piezoelectric horn with an external signal, the FEED pin should be used as the external signal input. The horn is enabled when HRNEN is driven to a logic high and is silenced when HRNEN is driven to a logic low. The horn output can be modulated using the HRNEN input.

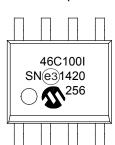

4.0 PACKAGING INFORMATION

4.1 Package Marking Information


8-Lead DFN (2x3x0.9 mm)


Example


8-Lead PDIP (300 mil)


Example

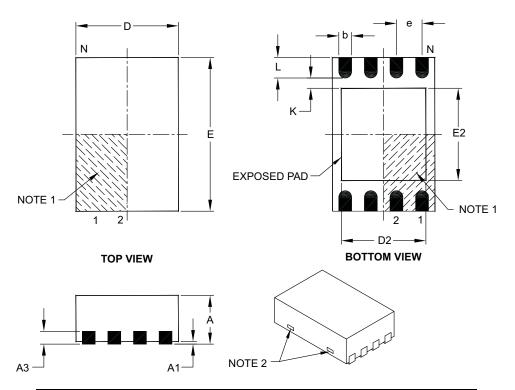
8-Lead SOIC (3.90 mm)

Example

Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code


(e3) Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

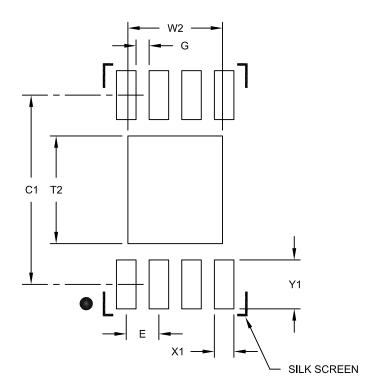
8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimens	ion Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		0.50 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	Е		3.00 BSC		
Exposed Pad Length	D2	1.30	_	1.55	
Exposed Pad Width	E2	1.50	_	1.75	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20	_	_	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

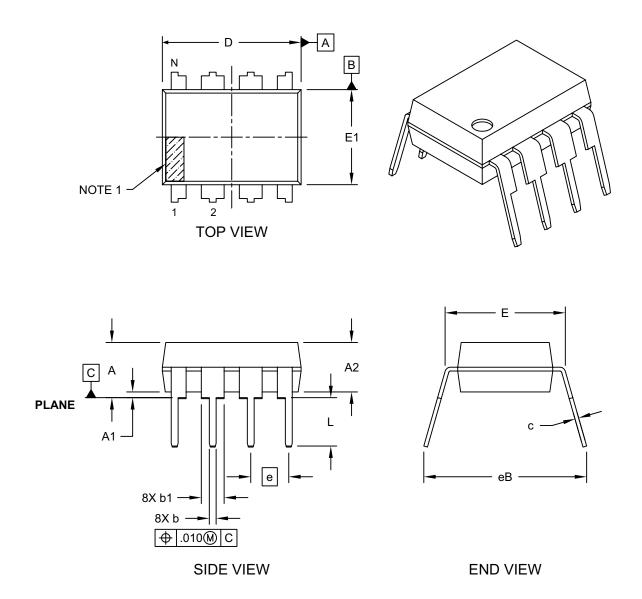
8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

ote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	W2		1.45	
Optional Center Pad Length	T2		1.75	
Contact Pad Spacing	C1		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.20		

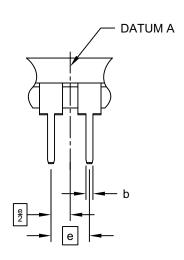
Notes:

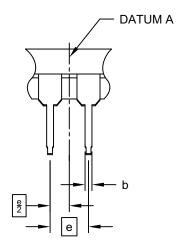

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2123B

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Microchip Technology Drawing No. C04-018D Sheet 1 of 2

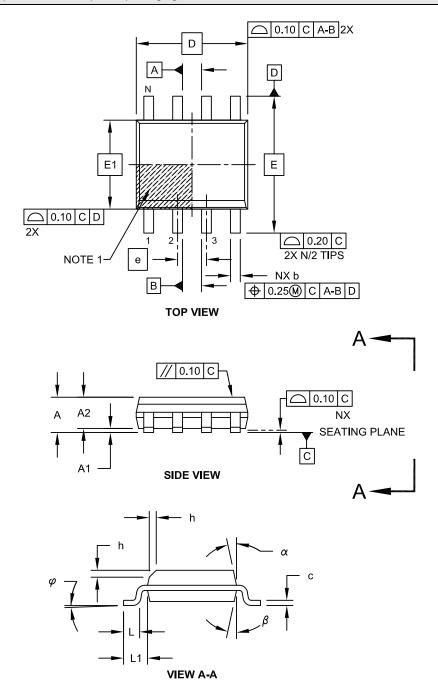
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN (VENDOR DEPENDENT)

	INCHES			
Dimension	Dimension Limits		NOM	MAX
Number of Pins	N		8	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	1
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014 .018 .022		
Overall Row Spacing §	eB	-	-	.430

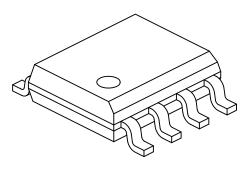
Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-018D Sheet 2 of 2 $\,$

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

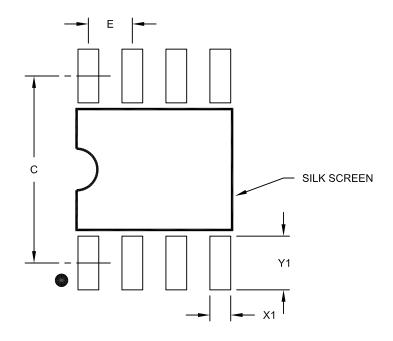

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2 $\,$

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

lote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	Е	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	Г	0.40	-	1.27	
Footprint	L1		1.04 REF		
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5° - 15°			
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimension	Dimension Limits		MIN NOM				
Contact Pitch	Е		1.27 BSC				
Contact Pad Spacing	С		5.40				
Contact Pad Width (X8)	X1			0.60			
Contact Pad Length (X8)	Y1			1.55			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (June 2014)

The following is the list of modifications:

- 1. Added new package to the family (2x3 DFN) and related information throughout the document.
- 2. Added thermal package resistance information in Temperature Specifications.
- 3. Added package markings and drawings for all packages.
- 4. Added Product Identification System.

Revision A (May 2009)

· Original Release of this Document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X XX T X	Exa	amples:	
Device	Package Number Tape Lead of Pins and Reel Free	a)	RE46C100D8F:	8LD DFN Package, Lead Free
Device:	RE46C100: CMOS Photoelectric Smoke Detector ASIC RE46C100T: CMOS Photoelectric Smoke Detector ASIC (Tape and Reel)	b)	RE46C100D8TF: RE46C100E8F:	8LD DFN Package, Tape and Reel, Lead Free 8LD PDIP Package,
Package:	D = 8-Lead DFN E = Plastic Dual In-Line (300 mil Body), 8-lead (PDIP) S = Plastic Small Outline - Narrow, 3.90 mm Body, 8-Lead (SOIC)	d)	RE46C100S8F:	Lead Free 8LD SOIC Package, Lead Free
	0 2000 (0010)	e)	RE46C100S8TF:	8LD SOIC Package, Tape and Reel, Lead Free

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rrinted on recycled paper.

ISBN: 978-1-63276-287-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

Fax: 91-80-3090-4123 India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok**

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20

Fax: 45-4485-2829

Fax: 33-1-69-30-90-79 **Germany - Dusseldorf**

Tel: 49-2129-3766400 **Germany - Munich** Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 **Germany - Pforzheim**

Tel: 49-7231-424750 Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14